Author:
Abdel-Gawwad Hamdy A.,Mohammed Mona S.,Arif Mohammed A.,Shoukry Hamada
Abstract
Abstract
This study represents the sustainable/safe consumption of lead glass sludge (LGS) in the fabrication of thermally insulating foamed glass via sintering (750–950º C) and chlorination processes. The impact of selected additives including calcium chloride (CaCl2) and sodium hydroxide (NaOH) on the foaming efficiency and Pb-stabilization has been deeply investigated. LGS is mainly lead silicate material with considerable content of calcium carbonate, which acts as foaming agent during sintering process. The newly developed foamed-materials exhibited thermal conductivity of 0.054–0.136 W/m.K, density of 0.23–1.10 g/cm3, porosity of 63.3–92.6%, and compressive strength of 0.10–2.69 MPa. X-ray diffraction proved that the immobilization mechanism was attributed to the transformation of free Pb within LGS into insoluble ganomalite Pb9Ca5MnSi9O33 phase. Adding NaOH enhanced the foaming process accompanied by a significant reduction in Pb-leaching. Incorporating CaCl2 has resulted in a retardation in Pb-leaching, which associated with Pb-stabilization and Pb-vaporization. In an attempt to reduce CO2-emission, the potential use of alkali-rich-wastewater (AW) as eco-friendly alkali source in lieu of NaOH was studied. Regardless of the variation in Pb-concentrations in leachates, all samples recorded Pb-concentrations lower than the safe limit (≤ 5 mg/l), achieving Pb-immobilization of 95.98–99.87%. The significantly reduced thermal conductivity and enhanced Pb-immobilization efficiency along with the reasonable compressive strength summarize the major innovation presented in this study.
Funder
Housing & Building National Research Center
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献