Reuse of lead glass sludge in the fabrication of thermally insulating foamed glass with outstanding properties and high Pb-stabilization

Author:

Abdel-Gawwad Hamdy A.,Mohammed Mona S.,Arif Mohammed A.,Shoukry Hamada

Abstract

Abstract This study represents the sustainable/safe consumption of lead glass sludge (LGS) in the fabrication of thermally insulating foamed glass via sintering (750–950º C) and chlorination processes. The impact of selected additives including calcium chloride (CaCl2) and sodium hydroxide (NaOH) on the foaming efficiency and Pb-stabilization has been deeply investigated. LGS is mainly lead silicate material with considerable content of calcium carbonate, which acts as foaming agent during sintering process. The newly developed foamed-materials exhibited thermal conductivity of 0.054–0.136 W/m.K, density of 0.23–1.10 g/cm3, porosity of 63.3–92.6%, and compressive strength of 0.10–2.69 MPa. X-ray diffraction proved that the immobilization mechanism was attributed to the transformation of free Pb within LGS into insoluble ganomalite Pb9Ca5MnSi9O33 phase. Adding NaOH enhanced the foaming process accompanied by a significant reduction in Pb-leaching. Incorporating CaCl2 has resulted in a retardation in Pb-leaching, which associated with Pb-stabilization and Pb-vaporization. In an attempt to reduce CO2-emission, the potential use of alkali-rich-wastewater (AW) as eco-friendly alkali source in lieu of NaOH was studied. Regardless of the variation in Pb-concentrations in leachates, all samples recorded Pb-concentrations lower than the safe limit (≤ 5 mg/l), achieving Pb-immobilization of 95.98–99.87%. The significantly reduced thermal conductivity and enhanced Pb-immobilization efficiency along with the reasonable compressive strength summarize the major innovation presented in this study.

Funder

Housing & Building National Research Center

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3