A comprehensive study for Al2O3 nanofluid cooling effect on the electrical and thermal properties of polycrystalline solar panels in outdoor conditions

Author:

Ibrahim Ali,Ramadan Muhammad Raafat,Khallaf Abd EL-Monem,Abdulhamid Muhammad

Abstract

Abstract Photovoltaic (PV) technology is considered one of the most effective and promising renewable sources of energy. The PV system’s efficiency strongly depends on its operating temperature, which acts as a defect to the electrical efficiency by increasing over 25 °C. In this work, a comparison was performed between three traditional polycrystalline solar panels simultaneously at the same time and under the same weather conditions. The electrical and thermal performances of the photovoltaic thermal (PVT) system integrated with a serpentine coil configured sheet with a plate thermal absorber setup are evaluated using water and aluminum oxide nanofluid. For higher mass flow rates and nanoparticle concentrations, an improvement in the PV modules short-circuit current (Isc) and open-circuit voltage (Voc) yield and electrical conversion efficiency is achieved. The enhancement in the PVT electrical conversion efficiency is 15.5%. For 0.05% volume concentration of Al2O3 and flow rate of 0.07 kg/s, an enhancement of 22.83% of the temperature of PVT panels’ surface over the reference panel has been obtained. An uncooled PVT system reached a maximum panel temperature of 75.5 °C at noontime and obtained an average electrical efficiency of 12.156%. Water and nanofluid cooling reduce the panel temperature by 10.0 °C and 20.0 °C at noontime, respectively.

Funder

Tanta University

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3