The combined rhizoremediation by a triad: plant-microorganism-functional materials

Author:

Chojnacka KatarzynaORCID,Moustakas Konstantinos,Mikulewicz Marcin

Abstract

AbstractThe article describes new strategies for the remediation of soils contaminated with organic and inorganic pollutants. The aim of this study is to investigate the synergistic effects of combining plant-microorganism-functional materials for a more effective reduction of soil contamination with toxic chemicals. The innovative triad involves functional materials as a habitat for microorganisms, which helps to control the release of pollutants into the soil solution from the adsorbed form. This, in turn, reduces the toxic effect on microorganisms and plants. Microorganisms play a complex role, consisting of partial biodegradation of pollutants, stimulation of plant growth, and support for nutrient supply. Plants synthesize root exudates that facilitate microorganisms in biodegrading organic pollutants and stimulate their growth. The plant takes up pollutants through the root system, which can be further supported by endophytic microorganisms. The cooperation of the three players produces a synergistic effect that enhances the effectiveness of rhizodegradation supported by functional materials, which is more effective than using microorganisms, phytoremediation, or functional materials alone. The combination of physicochemical methods (functional materials) and microbiological methods (bacteria and fungi, rhizosphere, symbiotic and non-symbiotic) supported by plants (hyperaccumulators) is a promising approach for reducing chemicals from soil. Key examples of the synergistic effects of combining plant-microorganism-functional materials have been provided in this article.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3