Abstract
AbstractChlorinated solvents are among the common groundwater contaminants that show high complexity in their distribution in the subsoil. Microorganisms play a vital role in the natural attenuation of chlorinated solvents. Thus far, how the in situ soil microbial community responds to chlorinated solvent contamination has remained unclear. In this study, the microbial community distribution within two boreholes located in the source area of perchloroethene (PCE) was investigated via terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis. Microbial data were related to the lithological and geochemical data and the concentration and isotopic composition of chloroethenes to determine the key factors controlling the distribution of the microbial communities. The results indicated that Proteobacteria, Actinobacteria, and Firmicutes were the most abundant phylums in the sediment. The statistical correlation with the environmental data proved that fine granulometry, oxygen tolerance, terminal electron-acceptor processes, and toxicity control microbial structure. This study improves our understanding of how the microbial community in the subsoil responds to high concentrations of chlorinated solvents.
Funder
Spanish Ministry of Education
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献