Evaluating recycling fertilizers for tomato cultivation in hydroponics, and their impact on greenhouse gas emissions

Author:

Halbert-Howard Aladdin,Häfner Franziska,Karlowsky Stefan,Schwarz Dietmar,Krause ArianeORCID

Abstract

AbstractSoilless culture systems offer an environmentally friendly and resource-efficient alternative to traditional cultivation systems fitting within the scheme of a circular economy. The objective of this research was to examine the sustainable integration of recycling fertilizers in hydroponic cultivation—creating a nutrient cycling concept for horticultural cultivation. Using the nutrient film technique (NFT), three recycling-based fertilizer variants were tested against standard synthetic mineral fertilization as the control, with 11 tomato plants (Solanum lycopersicum L. cv. Pannovy) per replicate (n = 4) and treatment: two nitrified urine-based fertilizers differing in ammonium/nitrate ratio (NH4+:NO3), namely (1) “Aurin” (AUR) and (2) “Crop” (CRO); as well as (3) an organo-mineral mixture of struvite and vinasse (S+V); and (4) a control (NPK). The closed chamber method was adapted for gas fluxes (N2O, CH4, and CO2) from the root zone. There was no indication in differences of the total shoot biomass fresh matter and uptake of N, P and K between recycling fertilizers and the control. Marketable fruit yield was comparable between NPK, CRO and S+V, whereas lower yields occurred in AUR. The higher NH4+:NO3 of AUR was associated with an increased susceptibility of blossom-end-rot, likely due to reduced uptake and translocation of Ca. Highest sugar concentration was found in S+V, which may have been influenced by the presence of organic acids in vinasse. N2O emissions were highest in S+V, which corresponded to our hypothesis that N2O emissions positively correlate with organic-C input by the fertilizer amendments. Remaining treatments showed barely detectable GHG emissions. A nitrified urine with a low NH4+:NO3 (e.g., CRO) has a high potential as recycling fertilizer in NFT systems for tomato cultivation, and S+V proved to supply sufficient P and K for adequate growth and yield. Alternative cultivation strategies may complement the composition of AUR.

Funder

Bundesanstalt für Landwirtschaft und Ernährung

Horizon 2020

Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3