Modeling construction and demolition waste quantities in Tanta City, Egypt: a synergistic approach of remote sensing, geographic information system, and hybrid fuzzy neural networks

Author:

Elshaboury Nehal,AlMetwaly Wael M.

Abstract

AbstractA waste management strategy needs accurate data on the generation rates of construction and demolition waste (CDW). The objective of this study is to provide a robust methodology for predicting CDW generation in Tanta City, one of the largest and most civilized cities in Egypt, based on socioeconomic and waste generation statistics from 1965 to 2021. The main contribution of this research involves the fusion of remote sensing and geographic information systems to construct a geographical database, which is employed using machine learning for modeling and predicting the quantities of generated waste. The land use/land cover map is determined by integrating topographic maps and remotely sensed data to extract the built-up, vacant, and agricultural areas. The application of a self-organizing fuzzy neural network (SOFNN) based on an adaptive quantum particle swarm optimization algorithm and a hierarchical pruning scheme is introduced to predict the waste quantities. The performance of the proposed models is compared against that of the FNN with error backpropagation and the group method of data handling using five evaluation measures. The results of the proposed models are satisfactory, with mean absolute percentage error (MAPE), normalized root mean square error (NRMSE), determination coefficient, Kling–Gupta efficiency, and index of agreement ranging between 0.70 and 1.56%, 0.01 and 0.03, 0.99 and 1.00, 0.99, and 1.00. Compared to other models, the proposed models reduce the MAPE and NRMSE by more than 92.90% and 90.64% based on fivefold cross-validation. The research findings are beneficial for utilizing limited data in developing effective strategies for quantifying waste generation. The simulation outcomes can be applied to monitor the urban metabolism, measure carbon emissions from the generated waste, develop waste management facilities, and build a circular economy in the study area.

Funder

Housing & Building National Research Center

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3