Author:
Rahmani Paria,Gholami Hamid,Golzari Shahram
Publisher
Springer Science and Business Media LLC
Reference58 articles.
1. Abdollahi A, Pradhan B (2023) Explainable artificial intelligence (XAI) for interpreting the contributing factors feed into the wildfire susceptibility prediction model. Sci Total Environ 879:163004
2. Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, Asari VK (2019) A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3):292
3. Arabameri A, Pal SC, Rezaie F, Chakrabortty R, Chowdhuri I, Blaschke T, Ngo PTT (2021) Comparison of multi-criteria and artificial intelligence models for land-subsidence susceptibility zonation. J Environ Manage 284:112067
4. Baesmat KH, Latifi S (2023) A new hybrid method for electrical load forecasting based on deviation correction and MRMRMS. International Conference On Systems Engineering. Cham, Springer Nature Switzerland, pp 293–303
5. Baesmat KH, Masoudipour I, Samet H (2021) Improving the performance of short-term load forecast using a hybrid artificial neural network and artificial bee colony algorithm amélioration des performances de la prévision de la charge à court terme à l’aide d’un réseau neuronal artificiel hybride et d’un algorithme de colonies d’abeilles artificielles. IEEE Can J Elect Comput Eng 44(3):275–282
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献