Interpretable machine learning approach to analyze the effects of landscape and meteorological factors on mosquito occurrences in Seoul, South Korea

Author:

Lee Dae-Seong,Lee Da-Yeong,Park Young-SeukORCID

Abstract

AbstractMosquitoes are the underlying cause of various public health and economic problems. In this study, patterns of mosquito occurrence were analyzed based on landscape and meteorological factors in the metropolitan city of Seoul. We evaluated the influence of environmental factors on mosquito occurrence through the interpretation of prediction models with a machine learning algorithm. Through hierarchical cluster analysis, the study areas were classified into waterside and non-waterside areas, according to the landscape patterns. The mosquito occurrence was higher in the waterside area, and mosquito abundance was negatively affected by rainfall at the waterside. The mosquito occurrence was predicted in each cluster area based on the landscape and cumulative meteorological variables using a random forest algorithm. Both models exhibited good performance (both accuracy and AUROC > 0.8) in predicting the level of mosquito occurrence. The embedded relationship between the mosquito occurrence and the environmental factors in the models was explained using the Shapley additive explanation method. According to the variable importance and the partial dependence plots for each model, the waterside area was more influenced by the meteorological and land cover variables than the non-waterside area. Therefore, mosquito control strategies should consider the effects of landscape and meteorological conditions, including the temperature, rainfall, and the landscape heterogeneity. The present findings can contribute to the development of mosquito forecasting systems in metropolitan cities for the promotion of public health.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3