A study of bacteria producing carbonic anhydrase enzyme for CaCO3 precipitation and soil biocementation

Author:

Mwandira Wilson,Mavroulidou Maria,Timmermans Martijn,Gunn Michael John,Gray Christopher,Pantoja-Muñoz Leonardo,Purchase Diane

Abstract

AbstractWe study the carbonic anhydrase (CA) pathway using autochthonous CA-producing bacteria as a means of inducing calcite precipitation, which acts as a biocement to improve the engineering soil properties. Forty different microbial strains producing CA were isolated from the foundation soil of a railway embankment in Prickwillow, UK. Three of the best CA-producing strains were selected and identified by DNA sequencing as Bacillus licheniformis, Bacillus toyonensis and Bacillus pumilus with CA activity values respectively of 1.79 U/ml, 1.42 U/ml and 1.55 U/ml. To optimise the treatments, we investigated the effect of pH, temperature, zinc co-factor and cementation solution molarity on the growth and CA activity and bioprecipitates, with CO2 added in the form of bicarbonate. Scanning electron microscope (SEM) analysis of the bioprecipitates showed that these had characteristic morphologies of calcite and vaterite crystals. The formation of calcite was further corroborated by FT-IR and Raman analysis of bioprecipitates. The precultured bacteria were injected into the fine-grained soil together with cementation solution. Unconfined compressive strength in treated soil increased up to 1 MPa, and its calcium carbonate content increased by 2.78%. This, as well as the stability of the treated soil upon water immersion, proved the biocementation of the fine-grained soil. These findings suggest the potential of employing the CA biocementation route for soil stabilisation pending further development of the technique.

Funder

HORIZON2020 MSCA

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3