Synthesis of an innovative SF/NZVI catalyst and investigation of its effectiveness on bio-oil production in liquefaction process alongside other parameters

Author:

Ersöz Kübra,Bayrak BaharORCID,Gündüz Figen,Karaca Hüseyin

Abstract

AbstractToday, new energy sources alternative to fossil fuels are needed to meet the increasing energy demand. It is becoming increasingly important to constitute new energy sources from waste biomass through the liquefaction process. In this study, walnut shells (WS) were liquefied catalytically and non-catalytically under different parameters using the liquefaction method. In this process, the effect of silica fume/nano zero-valent iron (SF/NZVI) catalysts on the conversion rates was investigated. The catalyst was synthesized by reducing NZVI using a liquid phase chemical reduction method on SF. The SF/NZVI catalyst was characterized by scanning electron microscopy- energy dispersive X-ray (SEM–EDX), transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis. The effect of various process parameters on the liquefaction process was investigated. In this context, the reaction temperature ranged from 300 to 400 °C, the solid/solvent ratio ranged from 1/1 to 1/3, the reaction time ranged from 30 to 90 min, and the catalyst concentration ranged from 1 to 6%. According to the results obtained, the most suitable operating conditions for non-catalytic experiments in liquefaction of WS were found to be temperature of 400 °C, reaction time of 60 min, and solid/solvent of 1/3. In catalytic conditions, the optimum values were obtained as temperature of 375 °C, reaction time of 60 min, solid/solvent ratio of 1/3, and catalyst concentration of 6%. The highest total conversion and (oil + gas) % conversion were 90.4% and 46.7% under non-catalytic conditions and 90.7% and 62.3% under catalytic conditions, respectively. Gas chromatography/mass spectrometry (GC/MS) analysis revealed the bio-oil was mainly composed of aromatic compounds (benzene, butyl-, indane and their derivatives,) and polyaromatic compounds (naphthalene, decahydro-, cis-, naphthalene, 1-methyl-.). The aim of increasing the quantity and quality of the light liquid product in the study has been achieved.

Funder

Atatürk Üniversitesi

Ataturk University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3