Zirconium preconcentration from zircon raffinate using gamma radiation–induced polymerization of reduced graphene oxide composite

Author:

Ali Amr Hamdi,Abdo Shaimaa Mohammed,Dakroury Gehan Abdel Rahman SadekORCID

Abstract

Abstract Zirconium is commonly used as a cladding material for nuclear reactors. The purity of the zirconium material seeks to control reactor efficiency. A novel composite of reduced graphene oxide–grafted polyacrylic acid, malic acid, and trioctylamine (rGO-g-PAA-MA/TOA) was prepared using in situ radical polymerization with gamma radiation at a dose of 25 KGy from a 60Co cell to preconcentrate zirconium Zr(IV) from zircon raffinate. Five distinct rGO-g-PAA-MA/TOA composite compositions were created and evaluated. The best composite composition was 62.95% acrylic acid, 15.8% malic acid, and 15.8% trioctylamine. After 60 min, the sorption reaction reached equilibrium at pH 0.35 and 20 °C. The pseudo nth order indicated that the order of the sorption reaction was 1.8476. The Elovich model and Dubinin-Radushkevich model controlled the kinetic mechanism and adsorption isotherm of the sorption reaction, respectively; based on estimated regression plots and quantitatively with three different error functions: coefficient of determination (R2), chi-square statistic (χ2), and corrected Akaike information (AICc). The adsorption capacity of rGO-g-PAA-MA/TOA was 75.06 mg g−1. Exothermic reaction and spontaneous sorption took place. Using 2 M H2SO4, 98% of the zirconium was efficiently desorbed. The separation of contaminated Ti(IV) from desorbed Zr(IV) by raising pH to 2.5 through hydrolysis and ZrO2 formation.

Funder

Egyptian Atomic Energy Authority

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3