Abstract
AbstractIn this study, carbon quantum dots (C-QDs), prepared via hydrothermal-microwave procedures, were successfully combined with nanostructured titania (TiO2). The photocatalytic oxidation/reduction activity of the C-QDs/TiO2 composite films was evaluated in the decomposition of organic-inorganic contaminants from aqueous solutions under UV illumination. Physicochemical characterizations were applied to investigate the crystal structure of the carbon quantum dots and the composites. It was found that the prepared C-QDs/TiO2 composites had great contribution to the photocatalytic reduction of hexavalent chromium (Cr+6) species and 4-Nitrophenol (PNP) as well as to the photocatalytic oxidation of methylene blue (MB) and Rhodamine B (RhB) dyes. The mechanism of the photocatalytic reaction was studied with trapping experiments, revealing that the electron (e−) radical species were powerfully supported for the photocatalytic reduction of Cr+6 and PNP and the holes (h+) are the main active species for the photocatalytic oxidation reactions.
Funder
National Technical University of Athens
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献