Capability assessment of conventional and data-driven models for prediction of suspended sediment load
Author:
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine
Link
https://link.springer.com/content/pdf/10.1007/s11356-022-18594-4.pdf
Reference68 articles.
1. Adib A, Mahmoodi A (2017) Prediction of suspended sediment load using ANN GA conjunction model with Markov chain approach at flood conditions. KSCE J Civ Eng 21:447–457. https://doi.org/10.1007/s12205-016-0444-2
2. Akande KO, Owolabi TO, Olatunji SO, Abdul Raheem A (2017) hybrid particles warm optimization and support vector regression model for modelling permeabilityprediction of hydrocarbon reservoir. J Pet Sci Eng 150:43–53
3. Ali SH (2012) Miner for OACCR: Case of medical data analysis in knowledge discovery," IEEE, 2012 6th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), Sousse, pp. 962–975. https://doi.org/10.1109/SETIT.2012.6482043
4. Ali SH (2013) Novel Approach for Generating the key of stream cipher system using random forest data mining algorithm, Sixth International Conference on Developments in eSystems Engineering, Abu Dhabi, pp. 259–269. https://doi.org/10.1109/DeSE.2013.54
5. Alizadeh MJ, Kavianpou MR, Kisi O, Nourani V (2017) A new approach for simulating and forecasting the rainfall-runoff process within the next two months. J Hydrol 548:588–597. https://doi.org/10.1016/j.jhydrol.2017.03.032
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Suspended sediment load prediction using sparrow search algorithm-based support vector machine model;Scientific Reports;2024-06-05
2. A comparative survey between cascade correlation neural network (CCNN) and feedforward neural network (FFNN) machine learning models for forecasting suspended sediment concentration;Scientific Reports;2024-05-09
3. Applications and interpretations of different machine learning models in runoff and sediment discharge simulations;CATENA;2024-04
4. Enhancing sediment transport predictions through machine learning-based multi-scenario regression models;Results in Engineering;2023-12
5. Applying the C-Factor of the RUSLE Model to Improve the Prediction of Suspended Sediment Concentration Using Smart Data-Driven Models;Water;2022-09-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3