Mechanism of bonding, surface property, electrical behaviour, and environmental friendliness of carbon/ceramic composites produced via the pyrolysis of coal waste with polysiloxane polymer

Author:

Eterigho-Ikelegbe OrevaogheneORCID,Trammell Ryan,Ricohermoso Emmanuel,Bada Samson

Abstract

AbstractA simple mixing-pressing followed by thermal curing and pyrolysis process was used to upcycle coal waste into high-value composites. Three coal wastes of different physicochemical properties were investigated. The hypothetical mechanisms of bonding between the coal particles and the preceramic polymer are presented. The textural properties of the coals indicated that the lowest volatile coal waste (PCD) had a dense structure. This limited the diffusion and reaction of the preceramic polymer with the coal waste during pyrolysis, thereby leading to low-quality composites. The water contact angles of the composites up to 104° imply hydrophobic surfaces, hence, no external coating might be required. Analysis of the carbon phase confirmed that the amorphous carbon structure is prevalent in the composites compared to the coal wastes. The dc volume resistivity of the composites in the range of 22 to 82 Ω-cm infers that the composites are unlikely to suffer electrostatic discharge, which makes them useful in creating self-heating building parts. The leached concentrations of heavy metal elements from the composites based on the end-of-life scenario were below the Toxicity Characteristic Leaching Procedure regulatory limits. Additionally, the release potential or mobility of the metals from the composites was not influenced by the pH of the eluants used. On the basis of the reported results, these carbon/ceramic composites show tremendous prospects as building materials due to these properties. Graphical Abstract

Funder

Department of Science and Innovation National Research Foundation (DSI-NRF) South African Research Chairs Initiative (SARChI) Clean Coal Technology Grant

University of the Witwatersrand

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3