Abstract
AbstractGraffiti on construction materials has significant social and economic impacts, especially on artistic and historical artefacts. Anti-graffiti protective coatings are used to generate low surface energies that limit graffiti adhesion to the surface, thereby reducing surface damage and facilitating removal. The anti-graffiti properties of three commercial TiO2-based coatings were tested under outdoor exposure conditions using four colours of graffiti paint (red, blue, black, and white). Chemical removers were used to clean the stained surfaces to understand the impact of the photocatalytic coatings during the conventional cleaning procedure. The effectiveness of cleaning was assessed by visual observations, colour measurements, and the percentage of residual stain. The anti-graffiti efficacy was strongly dependent on the colour of the graffiti and characteristics of the TiO2 coating. The cleaning performance of TiO2-treated samples was likely related to the photocatalytic redox reactions that decompose the graffiti. Additionally, their hydrophilicity may also prevent the adhesion and/or penetration of graffiti paint on the surface and/or pore matrix.
Funder
Consejo Superior de Investigaciones Cientificas
Publisher
Springer Science and Business Media LLC