Effect of basin water depth on the performance of vertical discs’ solar still—experimental investigation

Author:

Diab Mohamed RagabORCID,Abou-Taleb Fawzy Shaban,Essa Fadl Abdelmonem

Abstract

Abstract The ability to get clean water is the most urgent birthright for human beings. The scarcity of safe drinking water is a major challenge in both developed and developing countries. Due to overpopulation, industrial revolution advancements, and agricultural evolution, this challenge has become crucially influential. Several studies on solar desalination are being conducted to create novel models that will improve the efficiency and production of these units. Because of their higher evaporation, condensing, exposure, and output rates than traditional stills, vertical distillers have lately piqued the interest of numerous academics. In this study, the scholars investigated the impact of varying water depth at the best rotating speed of discs from their earlier work (1.5 rpm) on the thermal productivity of vertical distillers. Numerous water depths (5, 8, 11, and 14 cm) were studied at 1.5 rpm to specify the best depth. The results indicated that utilizing moving discs enhanced the distillers' productivity. Besides, the peak distiller performance was obtained at 1.5 rpm and 5 cm. Furthermore, the yield of the modified single-stage vertical distiller (MSSVD) and modified double-stage vertical distiller (MDSVD) was increased by 350 and 617.4%, respectively, over the conventional tilted distiller (CTD) productivity of 2.3 L/m2 day. MSSVD and MDSVD had the highest efficacy rates of 48.4 and 77.2%. Lastly, for CTD, CVD, MSSVD, and MDSVD, the pure water cost was 0.025, 0.0477, 0.0180, and 0.0193 $/L, respectively.

Funder

Kafr El Shiekh University

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3