Arsenate removal from drinking water using by-products from conventional iron oxyhydroxides production as adsorbents coupled with submerged microfiltration unit

Author:

Usman Muhammad,Katsoyiannis Ioannis,Rodrigues Josma Henna,Ernst Mathias

Abstract

AbstractArsenic is among the major drinking water contaminants affecting populations in many countries because it causes serious health problems on long-term exposure. Two low-cost micro-sized iron oxyhydroxide-based adsorbents (which are by-products of the industrial production process of granular adsorbents), namely, micro granular ferric hydroxide (μGFH) and micro tetravalent manganese feroxyhyte (μTMF), were applied in batch adsorption kinetic tests and submerged microfiltration membrane adsorption hybrid system (SMAHS) to remove pentavalent arsenic (As(V)) from modeled drinking water. The adsorbents media were characterized in terms of iron content, BET surface area, pore volume, and particle size. The results of adsorption kinetics show that initial adsorption rate of As(V) by μTMF is faster than μGFH. The SMAHS results revealed that hydraulic residence time of As(V) in the slurry reactor plays a critical role. At longer residence time, the achieved adsorption capacities at As(V) permeate concentration of 10 μg/L (WHO guideline value) are 0.95 and 1.04 μg/mg for μGFH and μTMF, respectively. At shorter residence time of ~ 3 h, μTMF was able to treat 1.4 times more volumes of arsenic-polluted water than μGFH under the optimized experimental conditions due to its fast kinetic behavior. The outcomes of this study confirm that micro-sized iron oyxhydroxides, by-products of conventional adsorbent production processes, can successfully be employed in the proposed hybrid water treatment system to achieve drinking water guideline value for arsenic, without considerable fouling of the porous membrane.

Funder

Technische Universität Hamburg

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3