Evaluation of seasonal variation and the optimization of reducing sugar extraction from Ulva prolifera biomass using thermochemical method

Author:

Dave Niyam,Varadavenkatesan Thivaharan,Singh Ram Sharan,Giri Balendu Shekher,Selvaraj Raja,Vinayagam RameshORCID

Abstract

AbstractGreen macroalgae comprise significant amount of structural carbohydrates for their conversion to liquid biofuels. However, it generally relies on species characteristics and the variability in seasonal profile to determine its route for bioprocessing. Hence, this study was conducted to analyze the indigenous marine macroalgal strain (Ulva prolifera) with respect to periodic trend and reducing sugar extraction. Consequently, in our investigation, the monthly variation in sugar profile and bioethanol yield was assessed between the monsoon and post-monsoon seasons, of which relatively high reducing sugar and fermentative bioethanol yield of about 0.152 ± 0.009 g/gdw and 6.275 ± 0.161 g/L was obtained for the October-month isolate (MITM10). Thereafter, the biochemical profile of this collected biomass (MITM10) revealed carbohydrate 34.98 ± 3.30%, protein 12.45 ± 0.49%, and lipid 1.93 ± 0.07%, respectively, on dry weight basis. Of these, the total carbohydrate fraction yielded the maximum reducing sugar of 0.156 ± 0.005 g/gdw under optimal conditions (11.07% (w/v) dosage, 0.9 M H2SO4, 121°C for 50 min) for thermal-acid hydrolysis. Furthermore, the elimination of polysaccharides was confirmed using the characterization techniques scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Therefore, the present thermochemical treatment method provides a species-specific novel strategy to breakdown the macroalgal cell wall polysaccharides that enhances sugar extraction for its utilization as an efficient bioenergy resource.

Funder

Manipal University

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3