Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation
Author:
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine
Link
https://link.springer.com/content/pdf/10.1007/s11356-021-13875-w.pdf
Reference31 articles.
1. Adimalla N (2019) Groundwater quality for drinking and irrigation purposes and potential health risks assessment: a case study from semi-arid region of South India. Exposure Health 11(2):109–123
2. Ahmed U, Mumtaz R, Anwar H, Shah AA, Irfan R, García-Nieto J (2019) Efficient water quality prediction using supervised machine learning. Water 11(11):2210
3. Anand, A., & Suganthi, L. (2020). Forecasting of electricity demand by hybrid ANN-PSO models. In Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications (pp. 865-882). IGI Global.
4. Avila R, Horn B, Moriarty E, Hodson R, Moltchanova E (2018) Evaluating statistical model performance in water quality prediction. J Environ Manag 206:910–919
5. Bisht, A. K., Singh, R., Bhatt, A., & Bhutiani, R. (2017). Development of an automated water quality classification model for the River Ganga. In International Conference on Next Generation Computing Technologies (pp. 190-198). Springer, Singapore.
Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Hydrochemical investigation and prediction of groundwater quality in a tropical semi-arid region of southern India using machine learning;Groundwater for Sustainable Development;2024-09
2. Investigating emotional design of the intelligent cockpit based on visual sequence data and improved LSTM;Advanced Engineering Informatics;2024-08
3. Predicting water quality in municipal water management systems using a hybrid deep learning model;Engineering Applications of Artificial Intelligence;2024-07
4. Water quality prediction based on sparse dataset using enhanced machine learning;Environmental Science and Ecotechnology;2024-07
5. Artificial neural network-based water distribution scheme in real-time in long-distance water supply systems;AQUA — Water Infrastructure, Ecosystems and Society;2024-07-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3