Synthesis, electrospinning, and molecular docking of poly(methyl methacrylate) Schiff bases and their applications as polymeric antimicrobial agents and for dye removal

Author:

Kenawy El-Refaie,Ghazy Ahmed R.ORCID,Al-Hossainy Ahmed F.,Bishr Mohamed,Azzam Mohamed M.

Abstract

AbstractThe antibacterial activity of a variety of modified poly(methyl methacrylate) Schiff bases against common microbial infections and removal of methylene blue (MB) dye were screened. The Schiff bases were synthesized from the reaction of the modified (PMMA) with vanillin (PMMA)Van and cinnamaldehyde (PMMA)Cin. By using Fourier transformer infrared (FT-IR), X-ray diffraction analysis (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM), the structures of the nanofibers of the synthesized Schiff bases were confirmed. The modified Kirky–Bauer method was used to screen the antibacterial activities of all the obtained materials against various bacterial species, including gram-positive bacterial (Bacillus subtilis (4k1p), Staphylococcus aureus), Gram-negative bacteria (Escherichia coli (7ab3), Pseudomonas aeruginosa). Inhibition zones against gram-positive bacteria ranged in diameter from 7 to 14 mm, whereas for the Gram-negative bacteria, the inhibition zones found to be ranged between 6 and 13 mm. With a minimum bactericidal concentration (MBC) of 8 mg/mL and a minimum inhibitory concentration (MIC) of 2 mg/mL, (PMMA)Van shown the greatest antibacterial activity. Lastly, molecular docking research was done to better understand the interactions between this series' targets and inhibitors for (PMMA)Van and (PMMA)Cin (4k1p and 7ab3). Molecular modeling of these surface-adsorbed polymers indicated that (PMMA)Van binds more strongly with Nitrogen than does (PMMA)Cin through extra hydrogen-bonding interactions. All the developed materials were evaluated for the removal of 0.1 g/L methylene blue dye (MB) from an aqueous solution. The elimination percentage of MB dye ranged from 26.67% by using 0.05 g powder of (PMMA)Cin to 85.63% by employing 0.05 g nanofibers of (PMMA)Van. Graphical Abstract

Funder

Tanta University

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3