Managing carbon waste in a decarbonized industry: Assessing the potential of concrete mixing storage

Author:

Sousa VitorORCID,Nogueira RitaORCID,Meireles InêsORCID,Silva André

Abstract

AbstractThe effort towards a greener future will entail a shift to more environmentally friendly alternatives of many human activities. Within this context, the path towards a decarbonized society in general, and industrial decarbonization in particular, will require using low carbon solutions and/or capturing carbon emissions at the source. This flux of captured carbon will then require management and one option is to store it in concrete. The incorporation of the captured CO2 can be done during the mixing and/or curing. While the latter is more efficient and effective in terms of the amount of CO2 incorporated, it is limited to concrete in elements that are compatible with chamber curing. In practice, this would be restricted to the concrete pre-fabrication industry and, most probably, only to small size elements. Despite the lower performance, incorporation of CO2 into concrete during the mixing stage is a relatively universal alternative. The present research effort reveals that the latter solution is beneficial from an environmental point of view, with an estimated yearly carbon storage of 23 million tonnes worldwide against emissions of 2.5 million tonnes to do it.

Funder

Fundação para a Ciência e a Tecnologia

Universidade de Lisboa

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3