Author:
Audino Francesca,Conte Leandro Oscar,Schenone Agustina Violeta,Pérez-Moya Montserrat,Graells Moisès,Alfano Orlando Mario
Abstract
AbstractA kinetic model describing Fenton and photo-Fenton degradation of paracetamol (PCT) and consumption of hydrogen peroxide (H2O2) was proposed. A set of Fenton and photo-Fenton experiments (18 runs in total) was performed by fixing the initial concentration of PCT to 40 mg L−1 and varying the initial concentrations of H2O2 and ferrous ion, Fe2+. The experimental set-up was a well-stirred annular photoreactor equipped with an actinic BL TL-DK 36 W/10 1SL lamp. Experimental results highlighted that PCT is no more detected by HPLC analysis within a minimum reaction time of 2.5 and a maximum reaction time of 15.0 min. Besides, a maximum conversion of total organic carbon (TOC) of 68.5% was observed after 75 min of reaction in case of using UV radiation and the highest concentrations of the Fenton reagents. The experimental data were used to fit the kinetic model. The radiation field inside the reactor was taken into account through the local volumetric rate of photon absorption, evaluated by assuming a line source model with spherical and isotropic emission. The kinetic parameters were estimated by using a non-linear least-squares regression procedure and root mean square errors (RMSE) were calculated in order to validate the feasibility of the proposed model. A good agreement between experimental and predicted data was observed and the lowest values of RMSE resulted in 5.84 and 9.59% for PCT and H2O2 normalized concentrations, respectively.
Funder
Universidad Nacional del Litoral
Consejo Nacional de Investigaciones Científicas y Técnicas
Agencia Nacional de Promoción Científica y Tecnológica
Ministerio de Economía, Industria y Competitividad
Ministerio de Economía y Competitividad
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献