Hyperspectral imaging for estimating leaf, flower, and fruit macronutrient concentrations and predicting strawberry yields

Author:

Dung Cao Dinh,Trueman Stephen J.,Wallace Helen M.,Farrar Michael B.,Gama Tsvakai,Tahmasbian Iman,Bai Shahla HosseiniORCID

Abstract

AbstractManaging the nutritional status of strawberry plants is critical for optimizing yield. This study evaluated the potential of hyperspectral imaging (400–1,000 nm) to estimate nitrogen (N), phosphorus (P), potassium (K), and calcium (Ca) concentrations in strawberry leaves, flowers, unripe fruit, and ripe fruit and to predict plant yield. Partial least squares regression (PLSR) models were developed to estimate nutrient concentrations. The determination coefficient of prediction (R2P) and ratio of performance to deviation (RPD) were used to evaluate prediction accuracy, which often proved to be greater for leaves, flowers, and unripe fruit than for ripe fruit. The prediction accuracies for N concentration were R2P = 0.64, 0.60, 0.81, and 0.30, and RPD = 1.64, 1.59, 2.64, and 1.31, for leaves, flowers, unripe fruit, and ripe fruit, respectively. Prediction accuracies for Ca concentrations were R2P = 0.70, 0.62, 0.61, and 0.03, and RPD = 1.77, 1.63, 1.60, and 1.15, for the same respective plant parts. Yield and fruit mass only had significant linear relationships with the Difference Vegetation Index (R2 = 0.256 and 0.266, respectively) among the eleven vegetation indices tested. Hyperspectral imaging showed potential for estimating nutrient status in strawberry crops. This technology will assist growers to make rapid nutrient-management decisions, allowing for optimal yield and quality.

Funder

Hort Innovation

Griffith University

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3