Abstract
AbstractThe crystalline phase of molybdenum titanium tungsto-phosphate (MoTiWPO4) as an inorganic sorbent material was synthesized via the sol–gel method. The physicochemical characteristics of MoTiWPO4 were evaluated by using Fourier transform infrared (FT-IR), scanning electron microscope (SEM), energy dispersive X-ray (EDX), thermal analysis (TGA-DTA), and X-ray diffraction (XRD). MoTiWPO4 sorbent material exhibits a high chemical resistance to HNO3, HCl, and alkaline media. MoTiWPO4 has good thermal stability as it retained about 75.63% of its saturation capacity upon heating at 500 °C. The sorption studies for several metal ions revealed marked high sorption efficiency of MoTiWPO4 towards Cs+ and Sr2+ ions which reached 99% and 95%, respectively. The saturation capacity of MoTiWPO4 for Cs+ and Sr2+ is 113 and 109 mg/g, respectively. MoTiWPO4 is approved to be successfully eliminating both 137Cs and 85Sr from liquid radioactive waste streams by %eff. of 92.5 and 90.3, respectively, in the presence of competing ions from 60Co(divalent) and 152Eu (trivalent), confirming the batch experiment results for the removal of Cs+ and Sr2+ metal ions. Furthermore, the decontamination factor exceeds 13.3 in the case of 137Cs and 10.3 for 85Sr.
Funder
Egyptian Atomic Energy Authority
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献