Abstract
AbstractDifferent activities related to uranium mining and nuclear industry may have a negative impact on the environment. Bioremediation of nuclear pollutants using microorganisms is an effective, safe, and economic method. The present study compared the uranium biosorption efficiency of two immobilized algae: Nostoc sp. (cyanophyte) and Scenedesmus sp. (chlorophyte). Effects of metal concentration, contact time, pH, and biosorbent dosage were also studied. The maximum biosorption capacity (60%) by Nostoc sp. was obtained at 300 mg/l uranium solution, 60 min, pH 4.5, and 4.2 g/l algal dosage, whereas Scenedesmus sp. maximally absorbed uranium (65 %) at 150 mg/l uranium solution, 40 min, pH 4.5, and 5.6 g/l of algal dosage. The interaction of metal ions as Na2SO4, FeCl3, CuCl2, NiCl2, CoCl2, CdCl2, and AlCl3 did not support the uranium biosorption by algae. The obtained data was adapted to the linearized form of the Langmuir isotherm model. The experimental qmax values were 130 and 75 mg/g for Nostoc sp. and Scenedesmus sp., respectively. Moreover, the pseudo-second-order kinetic model was more applicable, as the calculated parameters were close to the experimental data. The biosorbents were also characterized by Fourier-transform infrared spectroscopy (ATR-FTIR), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM) analyses. The results suggest the applicability of algae, in their immobilized form, for recovery and biosorption of uranium from aqueous solution.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献