Magnetic hierarchical flower-like Fe3O4@ZIF-67/CuNiMn-LDH catalyst with enhanced redox cycle for Fenton-like degradation of Congo red: optimization and mechanism

Author:

Eltaweil Abdelazeem S.,Bakr Sara S.,Abd El-Monaem Eman M.,El-Subruiti Gehan M.

Abstract

AbstractA novel flower-like CuNiMn-LDH was synthesized and modified, to obtain a promising Fenton-like catalyst, Fe3O4@ZIF-67/CuNiMn-LDH, with a remarkable degradation of Congo red (CR) utilizing H2O2oxidant. The structural and morphological characteristics of Fe3O4@ZIF-67/CuNiMn-LDH were analyzed via FTIR, XRD, XPS, SEM-EDX, and SEM spectroscopy. In addition, the magnetic property and the surface’s charge were defined via VSM and ZP analysis, respectively. Fenton-like experiments were implemented to investigate the aptness conditions for the Fenton-like degradation of CR; pH medium, catalyst dosage, H2O2concentration, temperature, and the initial concentration of CR. The catalyst exhibited supreme degradation performance for CR to reach 90.9% within 30 min at pH 5 and 25 °C. Moreover, the Fe3O4@ZIF-67/CuNiMn-LDH/H2O2system revealed considerable activity when tested for different dyes since the degradation efficiencies of CV, MG, MB, MR, MO, and CR were 65.86, 70.76, 72.56, 75.54, 85.99, and 90.9%, respectively. Furthermore, the kinetic study elucidated that the CR degradation by the Fe3O4@ZIF-67/CuNiMn-LDH/H2O2system obeyed pseudo-first-order kinetic model. More importantly, the concrete results deduced the synergistic effect between the catalyst components, producing a continuous redox cycle consisting of five active metal species. Eventually, the quenching test and the mechanism study proposed the predominance of the radical mechanism pathway on the Fenton-like degradation of CR by the Fe3O4@ZIF-67/CuNiMn-LDH/H2O2system.Graphical Abstract

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3