Sludge reduction, nitrous oxide emissions, and phosphorus removal by oxic-settling-anaerobic (OSA) process: the effect of hydraulic retention time

Author:

Mannina Giorgio,Cosenza Alida,Di Trapani Daniele,Mofatto Paulo Marcelo Bosco

Abstract

AbstractThis paper presents a study on reducing sewage sludge by an oxic-settling-anaerobic (OSA) pilot plant compared to the conventional activated sludge (CAS) process in view of resource recovery and moving towards plant carbon neutrality. The OSA plant was supplied with real wastewater and the anaerobic reactor was operated under two hydraulic retention times (HRT) (4 and 6 h). Greenhouse gas (GHG) emissions were monitored for the first time to determine the OSA process’s production mechanism. The results highlighted that under the lowest HRT (4 h), the removal efficiencies of COD and PO4P, increased from 75 to 89% and from 39 to 50% for CAS and OSA configurations, respectively. The observed yield coefficient was reduced from 0.58 gTSS gCOD−1 (CAS period) to 0.31 gTSS gCOD−1 (OSA period). A remarkable deterioration of nitrification efficiency under OSA configuration was obtained from 79% (CAS) to 27% (OSA with HRT of 6 h). The huge deterioration of nitrification significantly affected the GHG emissions, with the N2O-N fraction increasing from 1% (CAS) to 1.55% (OSA 4 h HRT) and 3.54% (OSA 6 h HRT) of the overall effluent nitrogen, thus suggesting a relevant environmental implication due to the high global warming potential (GWP) of N2O. Graphical abstract

Funder

Università degli Studi di Palermo

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3