Effect of HKUST-1 metal–organic framework in root and shoot systems, as well as seed germination

Author:

Loera-Serna SandraORCID,Beltrán Hiram I.,Mendoza-Sánchez Mariana,Álvarez-Zeferino Juan Carlos,Almanza Fernando,Fernández-Luqueño Fabián

Abstract

AbstractThe seed germination, as well as root and shoot growth effect of HKUST-1 MOF, and its derived linear polymer ([Cu2(OH)(BTC)(H2O)]n·2nH2O) were herein examined. These effects were studied for seven higher plant species: sweet corn (Zea mays L.), black bean (Phaseolus vulgaris L.), tomato (Solanum lycopersicum L.), lettuce (Lactuca sativa L.), celosia (Celosia argentea L.), Aztec marigold (Tagetes erecta L.), and gypsophila (Gypsophila paniculata L.). The studied concentrations of MOFs were 10, 100, 500, or 1000 mg/L, enhancing the percentage of germination and growth of plants in most species. In general, the growth of the root is lower compared to the controls due to the capacity of the MOF to adsorb water and provide micronutrients such as C, O, and Cu, acting as a reserve for the plant. Shoot system growths are more pronounced with HKUST-1 compared with control, and linear polymer, due to the 3D structure adsorbs major water contents. It was found that all studied species are tolerant not only to Cu released from the material, but more evident to Cu structured in MOFs, and this occurs at high concentrations compared to many other systems. Finally, copper fixation was not present, studied by EDX mapping, banning the possibility of metallic phytotoxicity to the tested cultivars.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3