Study on hydration mechanism and environmental safety of thermal activated red mud-based cementitious materials

Author:

Zhu Junge,Yue Hongzhi,Ma Laijun,Li Zichao,Bai Rong

Abstract

Abstract Red mud (RM) cementitious materials were prepared with the thermally, thermoalkali- or thermocalcium-activated RM, steel slag (SS), and other additives. The effects of different thermal RM activation methods on the cementitious material hydration mechanisms, mechanical properties, and environmental risks were discussed and analyzed. The results showed that the hydration products of different thermally activated RM samples were similar with the main products being C-S–H, tobermorite, and Ca(OH)2. Ca(OH)2 was mainly present in thermally activated RM samples, and the tobermorite was mainly produced by samples prepared with thermoalkali- and the thermocalcium-activated RM. The mechanical properties of the samples prepared by thermally and thermocalcium-activated RM had early-strength properties, while the thermoalkali-activated RM samples were similar to the late-strength type of cement properties. The average flexural strength of thermally and the thermocalcium-activated RM samples at 14 days were 3.75 MPa and 3.87 MPa respectively, whereas, the 1000 °C thermoalkali-activated RM samples only at 28 days was 3.26 MPa; the above data could reach the single flexural strength (3.0 MPa) of the first-grade pavement blocks of the building materials industry standard of the People’s Republic of China-concrete pavement blocks (JC/T446-2000). The optimal preactivated temperature for different thermally activated RM was different; the optimal preactivated temperature for both thermally and thermocalcium-activated RM was 900 °C, and the flexural strength was 4.46 MPa and 4.35 MPa, respectively. However, the optimal preactivated temperature of thermoalkali activated RM at 1000 °C. The 900 °C thermally activated RM samples had better solidified effects for heavy metal elements and alkali substances. 600~800℃ thermoalkali activated RM samples had better solidified effects for heavy metal elements. Different temperatures of thermocalcium-activated RM samples showed different solidified effects on different heavy metal elements, which may be due to the influence of thermocalcium activation temperature on the structural changes of the hydration products of the cementitious samples. In this study, three thermal RM activation methods were proposed, and the co-hydration mechanism and environmental risk study of different thermally activated RM and SS were further elucidated. This not only provides an effective method for the pretreatment and safe utilization of RM, but also facilitates the synergistic resource treatment of solid waste and further promotes the research process of replacing part of traditional cement with solid waste.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of common industrial solid waste in water treatment: a review;Environmental Science and Pollution Research;2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3