Sustainable binary/ternary blended mortars with recycled water treatment sludge using fly ash or blast slag: Characterization and environmental-economical impacts

Author:

Kina CerenORCID

Abstract

AbstractWater treatment sludge (WTS) is produced daily and disposed of as hazardous material. It would be advisable to use locally available waste products as supplementary cementitious materials that ensure to be disposed of without harming the environment. As a novelty, this research investigated the potential of using recycled WTS with fly ash (FA) and ground-granulated blast furnace slag (BFS) as ternary blended binders. Thus, it can provide an economical solution and alleviate the adverse environmental effects of excessive production of wastes and cement production. Within this scope, the mortars with 0–30 wt% replacement of cement with modified WTS (MWTS) were produced as binary blend, and also, they were combined with FA/BFS as ternary blended binders. Therefore, optimum utilization of waste products into the mortar in terms of rheological, mechanical, durability, microstructural properties, and environmental-economical aspects was examined. Adding 10% recycled WTS as binary caused higher strengths with lower porosity measured by the mercury intrusion porosimeter test and denser microstructure, as revealed by XRD patterns and SEM results. However, the drawbacks of using recycled WTS, in terms of rheological parameters and environmental-economical aspects, were suppressed by adding FA/BFS with comparable strength values. Specifically, cost, CO2 footprint, and embodied energy were reduced by combining 10% MWTS with FA by 8.87%, 37.88%, and 33.07%, respectively, while 90-day compressive and flexural strength were 5.1% and 5.32% lower. This study developed a feasible solution to use recycled MWTS by obtaining more eco-friendly and cost-effective cement-based materials. Graphical Abstract

Funder

Malatya Turgut Ozal University

Malatya Turgut Özal University

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3