Do urban air pollutants induce changes in the thallus anatomy and affect the photosynthetic efficiency of the nitrophilous lichen Physcia adscendens?

Author:

Styburski JakubORCID,Skubała KajaORCID

Abstract

AbstractLichens are symbiotic organisms that are generally sensitive to air pollution due to their specific biological and physiological features. Physcia adscendens is a nitrophilous lichen well-known for being resistant to air pollution associated with progressive anthropopressure. The aim of this study was to investigate the effect of nitrogen oxides and suspended particulate matter (PM10 and PM2.5) on anatomical structure of the thallus and photobiont’s photosynthetic efficiency in P. adscendens inhabiting sites that differ in terms of air pollution level and thereby to determine the relevance of these pollutants for shaping the structure of the thallus and the physiological condition of the photosynthetic partner. We found that P. adscendens from polluted sites had increased thickness of the algal layer and the larger size of the algae cells, but a much lower ratio of the algal layer to the whole thallus. Lichens from highly polluted sites had also higher photosynthetic efficiency, which indicates a relatively good physiological condition of the photobiont. This indicates that the photobiont of P. adscendens is well-adapted to function under air pollution stress which may contribute to its success in colonizing polluted sites. Both changes in the anatomy of the lichen thallus and the efficiency of photosynthesis may be related to the enrichment of the environment with nitrogen. The increased photosynthetic efficiency as well as investment in the size of photobiont cells and growth mycobiont hyphae confirms that P. adscendens is well-adapted to urban conditions; however, the mechanism behind those adaptations needs more focus in the context of global environmental changes.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3