Agriculture without paraquat is feasible without loss of productivity—lessons learned from phasing out a highly hazardous herbicide

Author:

Stuart Alexander M.ORCID,Merfield Charles N.,Horgan Finbarr G.,Willis Sheila,Watts Meriel A.,Ramírez-Muñoz Fernando,U Jorge Sánchez,Utyasheva Leah,Eddleston Michael,Davis Mark L.,Neumeister Lars,Sanou Manoé R.,Williamson Stephanie

Abstract

Abstract A small proportion of the thousands of pesticides on the market today are associated with a disproportionately high incidence of severe acute pesticide poisoning and suicide. Paraquat stands out as one of the most lethal pesticides in common use, frequently involved in fatal incidents due to suicides or accidental exposure. Even though paraquat has been banned in over 67 countries, it is still widely used in many others, particularly in Asia and Latin America. Based on a literature review and consultations, this paper identifies options for replacing paraquat and distils practical lessons from numerous successes around the world. Our aim is to support regulators, policymakers, agronomists and the supply chain sector with practical information related to phasing out paraquat. Production data consistently failed to show any negative effects of banning paraquat on agricultural productivity. A wide range of alternative approaches to weed management and crop defoliation are available, many of which do not rely on herbicides. Over 1.25 million farmers in low- and middle-income countries (LMICs) successfully produce a range of crops for private voluntary standards (PVS) in food and fiber supply chains which prohibit paraquat use. We conclude from the findings of this study that eliminating paraquat will save lives without reducing agricultural productivity. Less hazardous and more sustainable alternatives exist. To enhance successful adoption and uptake of these methods on a wide scale, farmers require training and support within an enabling policy environment.

Funder

Open Philanthropy Project

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Reference179 articles.

1. Adeux G, Vieren E, Carlesi S, Bàrberi P, Munier-Jolain N, Cordeau S (2019) Mitigating crop yield losses through weed diversity. Nat Sustain 2:1018–1026

2. Alford J (2018) Use of mechanical weed control. Organic management techniques to improve sustainability of non-organic farming. Defra Project OF03111 Organic Management Techniques. Agricology, Kingham, UK. https://www.agricology.co.uk/resources/use-mechanical-weed-control. Accessed 3 Jan 2023

3. Amondham W, Parkpian P, Polprasert C, Delaune RD, Jugsujinda A (2006) Paraquat Adsorption, degradation, and remobilization in tropical soils of Thailand. J Environ Sci Health B 41:485–507

4. ASLM (2022) Alliance for Sustainable Landscape Management: herbicide free integrated weed management. https://aslm.lk/2018/08/15/herbicidesfree-weedmanagement/. Accessed 20 June 2022

5. Barbosa EA, da Silva IM, Franca AC, Silva E, de Matos C (2020) Evaluation of leaf and root absorptions of glyphosate in the growth of coffee plants. Arquivos do Instituto Biológico 87:1–8, e0762018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3