The migration law of magnesium ions during freezing and melting processes

Author:

Yan ZhangORCID,Tongshuai Liu,Yuanqing Tang,Wanli Zhao,Fangyun Ren,Tongguo Zhao,Yucan Liu

Abstract

AbstractTo explore the migration law of magnesium ions (Mg2+) during freezing and melting processes, laboratory simulation experiments involving freezing and melting were carried out to investigate the influence of ice thickness, freezing temperature, initial concentration, and initial pH on the distribution of Mg2+ in the ice-water system. The distribution coefficient “K” (the ratio of the Mg2+ concentration in the ice layer to the Mg2+ concentration in the water layer under ice) was used to characterize the migration ability of Mg2+. The results showed that during the freezing process, the concentration distribution of Mg2+ in the ice and water two-phase system was as follows: ice layer < water before freezing < water layer under ice; in other words, it migrated from ice layer to the water layer under ice. “K” decreased with increasing ice thickness, freezing temperature, initial concentration, and initial pH; the higher the ice thickness, freezing temperature, initial concentration, and initial pH were, the higher the migration efficiency of Mg2+ into the water layer under ice was. During the melting process, Mg2+ was released in large amounts (50–60%) at the initial stage (0–25%) and in small amounts (25–100%) uniformly in the middle and later periods. According to the change of Mg2+ concentration in ice melt water, an exponential model was established to predict Mg2+ concentration in ice melt period. The migration law of Mg2+during the freezing and melting process was explained by using first principles.

Funder

key technology research and development program of shandong

national outstanding youth science fund project of national natural science foundation of china

The Science and technology innovation fund of Yantai University

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3