Abstract
AbstractThe water quality implications of transferring stormwater through pipes composed of concrete (new and used), polyvinyl chloride (PVC), galvanized corrugated steel (GCS), high-density polyethylene (HDPE), and pipes subjected to cured in place pipe (CIPP) and spray in place pipe (SIPP) trenchless repair technologies on stormwater quality are reviewed. Studies involve either the use of flowing water or an immersion experimental design, with data showing contact with pipe materials can affect stormwater quality parameters including pH, electrical conductivity (EC), and concentrations of minerals, metals, and organic constituents, e.g. styrene. ‘In-transport’ changes in pH (1–3 units), EC (2–3-fold), bicarbonate (3–44-fold), and calcium (2–17-fold) in stormwaters were reported following exposure to concrete pipes. Differences between the use of synthetic and field-collected stormwater were identified, e.g. turbidity levels in field-collected stormwater reduced on passage through all pipe types, compared to synthetic water where levels of turbidity on exposure to concrete and cement-based SIPP increased slightly. Transfer through PVC and HDPE pipes had minimal effects on physicochemical parameters, whereas exposure to galvanized corrugated steel pipes led to increases in EC, Zn, and Pb. Though limited data was available, the use of CIPP repairs and associated waste condensate generated during thermal curing and/or incomplete curing of resins was identified to release organic contaminants of concerns (e.g. styrene, vinylic monomers, dibutyl phthalate (DBP), diethyl phthalate (DEP), and benzaldehyde). The implications of findings for both future research and stakeholders with responsibility for reducing diffuse pollution loads to receiving waters are considered.
Graphical Abstract
Funder
VINNOVA
Lulea University of Technology
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献