Toxicity screening of bisphenol A replacement compounds: cytotoxicity and mRNA expression in LMH 3D spheroids

Author:

Sharin Tasnia,Crump Doug,O’Brien Jason M.

Abstract

AbstractPreviously, we showed that the chicken LMH cell line cultured as 3D spheroids may be a suitable animal free alternative to primary chicken embryonic hepatocytes (CEH) for avian in vitro chemical screening. In this study, cytotoxicity and mRNA expression were determined in LMH 3D spheroids following exposure to bisphenol A (BPA), five BPA replacement compounds (BPF, TGSH, DD-70, BPAF, BPSIP), and 17β estradiol (E2). Results were compared to an earlier study that evaluated the same endpoints for these chemicals in CEH. BPA and the replacement compounds had LC50 values ranging from 16.6 to 81.8 μM; DD-70 and BPAF were the most cytotoxic replacements (LC50 = 17.23 ± 4.51 and 16.6 ± 4.78 μM). TGSH and DD-70 modulated the greatest number of genes, although fewer than observed in CEH. Based on the expression of apovitellenin and vitellogenin, BPAF was the most estrogenic compound followed by BPF, BPSIP, and BPA. More estrogen-responsive genes were modulated in LMH spheroids compared to CEH. Concentration-dependent gene expression revealed that DD-70 and BPAF altered genes related to lipid and bile acid regulation. Overall, cytotoxicity and clustering of replacements based on gene expression profiles were similar between LMH spheroids and CEH. In addition to generating novel gene expression data for five BPA replacement compounds in an in vitro avian model, this research demonstrates that LMH spheroids may represent a useful animal free alternative for avian toxicity testing.

Funder

Environment Canada

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3