Advancements and sustainable strategies for the treatment and management of wastewaters from metallurgical industries: an overview

Author:

Chalaris MichailORCID,Gkika Despina A.,Tolkou Athanasia K.,Kyzas George Z.

Abstract

AbstractMetallurgy is pivotal for societal progress, yet it yields wastewater laden with hazardous compounds. Adhering to stringent environmental mandates, the scientific and industrial sectors are actively researching resilient treatment and disposal solutions for metallurgical effluents. The primary origins of organic pollutants within the metallurgical sector include processes such as coke quenching, steel rolling, solvent extraction, and electroplating. This article provides a detailed analysis of strategies for treating steel industry waste in wastewater treatment. Recent advancements in membrane technologies, adsorption, and various other processes for removing hazardous pollutants from steel industrial wastewater are comprehensively reviewed. The literature review reveals that advanced oxidation processes (AOPs) demonstrate superior effectiveness in eliminating persistent contaminants. However, the major challenges to their industrial-scale implementation are their cost and scalability. Additionally, it was discovered that employing a series of biological reactors instead of single-step biological processes enhances command over microbial communities and operating variables, thus boosting the efficacy of the treatment mechanism (e.g., achieving a chemical oxygen demand (COD) elimination rate of over 90%). This review seeks to conduct an in-depth examination of the current state of treating metallurgical wastewater, with a particular emphasis on strategies for pollutant removal. These pollutants exhibit distinct features influenced by the technologies and workflows unique to their respective processes, including factors such as their composition, physicochemical properties, and concentrations. Therefore, it is of utmost importance for customized treatment and disposal approaches, which are the central focus of this review. In this context, we will explore these methods, highlighting their advantages and characteristics.

Funder

International Hellenic University

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3