Affiliation:
1. grid.79703.3a 0000000417643838 Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering South China University of Technology 510006 Guangzhou Guangdong People’s Republic of China
Abstract
Abstract
Aspergillus niger is a recognized workhorse used to produce food processing enzymes because of its extraordinarily high protein-producing capacity. We have developed a new cell surface display system de novo in A. niger using expression elements from generally recognized as safe certified microorganisms. Candida antarctica lipase B (CALB), a widely used hydrolase, was fused to an endogenous cell wall mannoprotein, CwpA, and functionally displayed on the cell surface. Localization of CALB was confirmed by enzymatic assay and immunofluorescence analysis using laser scanning confocal microscopy. After induction by maltose for 45 h, the hydrolytic activity and synthesis activity of A. niger mycelium-surface displayed CALB (AN-CALB) reached 400 and 240 U/g dry cell, respectively. AN-CALB was successfully used as a whole-cell catalyst for the enzymatic production of ethyl esters from a series of fatty acids of different chain lengths and ethanol. In a solvent-free system, AN-CALB showed great synthetic activity and afforded high substrate mole conversions, which amounted to 87 % for ethyl hexanoate after 2 h, 89 % for ethyl laurate after 2 h, and 84 % for ethyl stearate after 3 h. These results suggested that CwpA can act as an efficient anchoring motif for displaying enzyme on A. niger, and AN-CALB is a robust, green, and cost-effective alternative food-grade whole-cell catalyst to commercial lipase.
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Biotechnology,Bioengineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献