Affiliation:
1. grid.202119.9 0000000123648385 Department of Biological Engineering Inha University 402-751 Incheon Korea
Abstract
Abstract
We previously completed whole-genome sequencing of a rare actinomycete named Sebekia benihana, and identified the complete S. benihana cytochrome P450 complement (CYPome), including 21 cytochrome P450 hydroxylase (CYP), seven ferredoxin (FD), and four ferredoxin reductase (FDR) genes. Through targeted CYPome disruption, a total of 32 S. benihana CYPome mutants were obtained. Subsequently, a novel cyclosporine A region-specific hydroxylase was successfully determined to be encoded by a CYP-sb21 gene by screening the S. benihana CYPome mutants. Here, we report that S. benihana is also able to mediate vitamin D3 (VD3) hydroxylation. Among the 32 S. benihana CYPome mutants tested, only a single S. benihana CYP mutant, ΔCYP-sb3a, failed to show regio-specific hydroxylation of VD3 to 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3. Moreover, the VD3 hydroxylation activity in the ΔCYP-sb3a mutant was restored by CYP-sb3a gene complementation. Since all S. benihana FD and FDR disruption mutants maintained VD3 hydroxylation activity, we conclude that CYP-sb3a, a member of the bacterial CYP107 family, is the only essential component of the in vivo regio-specific VD3 hydroxylation process in S. benihana. Expression of the CYP-sb3a gene exhibited VD3 hydroxylation in the VD3 non-hydroxylating Streptomyces coelicolor, implying that the regio-specific hydroxylation of VD3 is carried out by a specific P450 hydroxylase in S. benihana.
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Biotechnology,Bioengineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献