Enhancement of NAD(H) pool for formation of oxidized biochemicals in Escherichia coli

Author:

Han Qi1,Eiteman Mark A1

Affiliation:

1. 0000 0004 1936 738X grid.213876.9 School of Chemical Materials and Biomedical Engineering University of Georgia 30602 Athens GA USA

Abstract

Abstract The NAD+/NADH ratio and the total NAD(H) play important roles for whole-cell biochemical redox transformations. After the carbon source is exhausted, the degradation of NAD(H) could contribute to a decline in the rate of a desired conversion. In this study, methods to slow the native rate of NAD(H) degradation were examined using whole-cell Escherichia coli with two model oxidative NAD+-dependent biotransformations. A high phosphate concentration (50 mM) was observed to slow NAD(H) degradation. We also constructed E. coli strains with deletions in genes coding several enzymes involved in NAD+ degradation. In shake-flask experiments, the total NAD(H) concentration positively correlated with conversion of xylitol to l-xylulose by xylitol 4-dehydrogenase, and the greatest conversion (80%) was observed using MG1655 nadR nudC mazG/pZE12-xdh/pCS27-nox. Controlled 1-L batch processes comparing E. coli nadR nudC mazG with a wild-type background strain demonstrated a 30% increase in final l-xylulose concentration (5.6 vs. 7.9 g/L) and a 25% increase in conversion (0.53 vs. 0.66 g/g). MG1655 nadR nudC mazG was also examined for the conversion of galactitol to l-tagatose by galactitol 2-dehydrogenase. A batch process using 15 g/L glycerol and 10 g/L galactitol generated over 9.4 g/L l-tagatose, corresponding to 90% conversion and a yield of 0.95 g l-tagatose/g galactitol consumed. The results demonstrate the value of minimizing NAD(H) degradation as a means to improve NAD+-dependent biotransformations.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3