Regulatory and biosynthetic effects of the bkd gene clusters on the production of daptomycin and its analogs A21978C1–3

Author:

Luo Shuai12,Chen Xin-Ai12,Mao Xu-Ming12,Li Yong-Quan12

Affiliation:

1. 0000 0004 1759 700X grid.13402.34 Institute of Pharmaceutical Biotechnology Zhejiang University 310058 Hangzhou China

2. Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering 310058 Hangzhou China

Abstract

Abstract Daptomycin is a cyclic lipopeptide antibiotic produced by Streptomyces roseosporus in an acidic peptide complex A21978C. In this complex, A21978C1–3 is most abundant and contains branched-chain fatty acyl groups, while daptomycin has a straight decanoic acyl group. The branched-chain α-keto acid dehydrogenase complex (BCDH complex), encoded by bkd gene clusters in Streptomyces, is responsible for the early step of converting branched-chain amino acids into branched-chain fatty acids. In a daptomycin industrial producer S. roseosporus L30, two alleles of bkd gene clusters, bkdA1B1C1/bkdA2B2C2, and a regulatory gene bkdR located upstream of bkdA2B2C2 are identified. We show that BkdR positively regulated bkdA2B2C2 expression and was negatively auto-regulated, but is not directly involved in regulation of daptomycin gene cluster expression. However, BkdR is required for both daptomycin and A21978C1–3 production. Furthermore, deletion of bkdA2B2C2 only led to partial reduction of A21978C1–3 production, while the ΔbkdA1B1C1 mutant shows very weak production of A21978C1–3, and the double bkd mutant has a similar production profile as the single ΔbkdA1B1C1 mutant, suggesting that bkdA1B1C1 gene cluster plays a dominant role in branched-chain fatty acid biosynthesis. So we reveal a unique regulatory function of BkdR and genetic engineered a bkd null strain for daptomycin production with reduced impurities.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3