Enzymatic production of 2-amino-2,3-dimethylbutyramide by cyanide-resistant nitrile hydratase

Author:

Lin Zhi-Jian1,Zheng Ren-Chao1,Wang Ya-Jun1,Zheng Yu-Guo1,Shen Yin-Chu1

Affiliation:

1. grid.413273.0 0000000105748737 Institute of Bioengineering Zhejiang University of Technology 18 Chaowang Road 310014 Hangzhou People’s Republic of China

Abstract

Abstract A novel enzymatic route for the synthesis of 2-amino-2,3-dimethylbutyramide (ADBA), important intermediate of highly potent and broad-spectrum imidazolinone herbicides, from 2-amino-2,3-dimethylbutyronitrile (ADBN) was developed. Strain Rhodococcus boritolerans CCTCC M 208108 harboring nitrile hydratase (NHase) towards ADBN was screened through a sophisticated colorimetric screening method and was found to be resistant to cyanide (5 mM). Resting cells of R. boritolerans CCTCC M 208108 also proved to be tolerant against high product concentration (40 g l−1) and alkaline pH (pH 9.3). A preparative scale process for continuous production of ADBA in both aqueous and biphasic systems was developed and some key parameters of the biocatalytic process were optimized. Inhibition of NHase by cyanide dissociated from ADBN was successfully overcome by temperature control (at 10°C). The product concentration, yield and catalyst productivity were further improved to 50 g l−1, 91% and 6.3 g product/g catalyst using a 30/70 (v/v) n-hexane/water biphasic system. Furthermore, cells of R. boritolerans CCTCC M 208108 could be reused for at lease twice by stopping the continuous reaction before cyanide concentration rose to 2 mM, with the catalyst productivity increasing to 12.3 g product/g catalyst. These results demonstrated that enzymatic synthesis of ADBA using whole cells of R. boritolerans CCTCC M 208108 showed potential for industrial application.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3