Improvement of oxidative stress tolerance in Saccharomyces cerevisiae through global transcription machinery engineering

Author:

Zhao Hongwei123,Li Jingyuan4,Han Beizhong1,Li Xuan23,Chen Jingyu1

Affiliation:

1. grid.22935.3f 0000000405308290 College of Food Science and Nutritional Engineering China Agricultural University PO Box 398 No. 17 Tsinghua East Road, Haidian District 100083 Beijing China

2. grid.169077.e 0000000419372197 Laboratory of Renewable Resources Engineering Purdue University West Lafayette IN USA

3. grid.169077.e 0000000419372197 Department of Agricultural and Biological Engineering Purdue University West Lafayette IN USA

4. grid.412608.9 0000000095266338 College of Food Science and Engineering Qingdao Agricultural University Qingdao China

Abstract

Abstract Excessive oxidative stress poses significant damage to yeast cells during fermentation process, and finally affects fermentation efficiency and the quality of products. In this paper, global transcription machinery engineering was employed to elicit Saccharomyces cerevisiae phenotypes of higher tolerance against oxidative stress caused by H2O2. Two strains from two plasmid-based mutagenesis libraries (Spt15 and Taf25), which exhibited significant increases in oxidative stress tolerance, were successfully isolated. At moderate H2O2 shock (≤3.5 mM), a positive correlation was found between the outperformance in cell growth of the oxidation-tolerate strains and H2O2 concentration. Several mutations were observed in the native transcription factors, which resulted in a different transcriptional profile compared with the control. Catalase and superoxide dismutase activities of the two mutants increased under H2O2 stress conditions. Fermentation experiments revealed that the mutant strain taf25-3 has a shorter lag phase compared to the control one, indicating that taf25-3 had improved adaptation ability to H2O2-induced oxidative stress and higher fermentation efficiency. Our study demonstrated that several amino acid substitutions in general transcription factors (Spt15 and Taf25) could modify the cellular oxidation defense systems and improve the anti-oxidation ability of S. cerevisiae. It could make the industrial ethanol fermentation more efficient and cost-effective by using the strain of higher stress tolerance.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3