Regulating the Golgi apparatus sorting of proteinase A to decrease its excretion in Saccharomyces cerevisiae

Author:

Song Lulu1,Chen Yefu1,Guo Qinghuan1,Huang Siyao1,Guo Xuewu1,Xiao Dongguang1

Affiliation:

1. 0000 0000 9735 6249 grid.413109.e Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China

Abstract

Abstract Beer foam stability, a key factor in evaluating overall beer quality, is influenced by proteinase A (PrA). Actin-severing protein cofilin and Golgi apparatus-localized Ca2+ ATPase Pmr1 are involved in protein sorting at the trans-Golgi network (TGN) in yeast Curwin et al. (Mol Biol Cell 23:2327–2338, 2012). To reduce PrA excretion into the beer fermentation broth, we regulated the Golgi apparatus sorting of PrA, thereby facilitating the delivery of more PrA to the vacuoles in the yeast cells. In the present study, the cofilin-coding gene COF1 and the Pmr1-coding gene PMR1 were overexpressed in the parental strain W303-1A and designated as W + COF1 and W + PMR1, respectively. The relative expression levels of COF1 in W + COF1 and PMR1 in W + PMR1 were 5.26- and 19.76-fold higher than those in the parental strain. After increases in the expression levels of cofilin and Pmr1 were confirmed, the PrA activities in the wort broth fermented with W + COF1, W + PMR1, and W303-1A were measured. Results showed that the extracellular PrA activities of W + COF1 and W + PMR1 were decreased by 9.24% and 13.83%, respectively, at the end of the main fermentation compared with that of W303-1A. Meanwhile, no apparent differences were found on the fermentation performance of recombinant and parental strains. The research uncovers an effective strategy for decreasing PrA excretion in Saccharomyces cerevisiae.

Funder

The National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3