Affiliation:
1. grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology (NELCF) Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
2. grid.28056.39 0000000121634895 State Key Laboratory of Bioreactor Engineering East China University of Science and Technology 130 Meilong Rd 200237 Shanghai China
3. grid.258151.a 0000000107081323 School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
Abstract
Abstract
Enhancing the production of α-cyclodextrin glycosyltransferase (α-CGTase) is a key aim in α-CGTase industries. Here, the mature α-cgt gene from Paenibacillus macerans JFB05-01 was redesigned with systematic codon optimization to preferentially match codon frequencies of Escherichia coli without altering the amino acid sequence. Following synthesis, codon-optimized α-cgt (coα-cgt) and wild-type α-cgt (wtα-cgt) genes were cloned into pET-20b(+) and expressed in E. coli BL21(DE3). The total protein yield of the synthetic gene was greater than wtα-cgt expression (1,710 mg L−1) by 2,520 mg L−1, with the extracellular enzyme activity being improved to 55.3 U mL−1 in flask fermentation. ΔG values at -3 to +50 of the pelB site of both genes were −19.10 kcal mol−1. Functionally, coα-CGTase was equally as effective as wtα-CGTase in forming α-cyclodextrin (α-CD). These findings suggest that preferred codon usage is advantageous for translational efficiency to increase protein expression. Finally, batch fermentation was applied, and the extracellular coα-CGTase enzyme activity was 326 % that of wtα-CGTase. The results suggest that codon optimization is a reasonable strategy to improve the yield of α-CGTase for industrial application.
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Biotechnology,Bioengineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献