Whole-genome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants

Author:

Guo Shengye1,Li Xingyu1,He Pengfei1,Ho Honhing2,Wu Yixin1,He Yueqiu1

Affiliation:

1. grid.410696.c Faculty of Agronomy and Biotechnology Yunnan Agricultural University 650201 Kunming China

2. grid.189747.4 0000000095542494 Department of Biology State University of New York 12561 New Paltz NY USA

Abstract

Abstract Bacillus subtilis XF-1 is a gram-positive, plant-associated bacterium that stimulates plant growth and produces secondary metabolites that suppress soil-borne plant pathogens. In particular, it is especially highly efficient at controlling the clubroot disease of cruciferous crops. Its 4,061,186-bp genome contains an estimated 3853 protein-coding sequences and the 1155 genes of XF-1 are present in most genome-sequenced Bacillus strains: 3757 genes in B. subtilis 168, and 1164 in B. amyloliquefaciens FZB42. Analysis using the Cluster of Orthologous Groups database of proteins shows that 60 genes control bacterial mobility, 221 genes are related to cell wall and membrane biosynthesis, and more than 112 are genes associated with secondary metabolites. In addition, the genes contributed to the strain’s plant colonization, bio-control and stimulation of plant growth. Sequencing of the genome is a fundamental step for developing a desired strain to serve as an efficient biological control agent and plant growth stimulator. Similar to other members of the taxon, XF-1 has a genome that contains giant gene clusters for the non-ribosomal synthesis of antifungal lipopeptides (surfactin and fengycin), the polyketides (macrolactin and bacillaene), the siderophore bacillibactin, and the dipeptide bacilysin. There are two synthesis pathways for volatile growth-promoting compounds. The expression of biosynthesized antibiotic peptides in XF-1 was revealed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3