Genetic improvement of xylose metabolism by enhancing the expression of pentose phosphate pathway genes in Saccharomyces cerevisiae IR-2 for high-temperature ethanol production

Author:

Kobayashi Yosuke1,Sahara Takehiko1,Suzuki Toshihiro2,Kamachi Saori2,Matsushika Akinori2,Hoshino Tamotsu2,Ohgiya Satoru3,Kamagata Yoichi3,Fujimori Kazuhiro E1

Affiliation:

1. 0000 0001 2230 7538 grid.208504.b Bioproduction Research Institute (BPRI) National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi 305-8566 Tsukuba Ibaraki Japan

2. 0000 0001 2230 7538 grid.208504.b Institute for Sustainable Chemistry (ISC) National Institute of Advanced Industrial Science and Technology (AIST) 3-11-32 Kagamiyama 739-0046 Higashihiroshima Hiroshima Japan

3. 0000 0001 2230 7538 grid.208504.b Bioproduction Research Institute (BPRI) National Institute of Advanced Industrial Science and Technology (AIST) 2-17-2-1 Tsukisamu-higashi, Toyohira 062-8517 Sapporo Hokkaido Japan

Abstract

Abstract The pentose phosphate pathway (PPP) plays an important role in the efficiency of xylose fermentation during cellulosic ethanol production. In simultaneous saccharification and co-fermentation (SSCF), the optimal temperature for cellulase hydrolysis of lignocellulose is much higher than that of fermentation. Successful use of SSCF requires optimization of the expression of PPP genes at elevated temperatures. This study examined the combinatorial expression of PPP genes at high temperature. The results revealed that over-expression of TAL1 and TKL1 in Saccharomyces cerevisiae (S. cerevisiae) at 30 °C and over-expression of all PPP genes at 36 °C resulted in the highest ethanol productivities. Furthermore, combinatorial over-expression of PPP genes derived from S. cerevisiae and a thermostable yeast Kluyveromyces marxianus allowed the strain to ferment xylose with ethanol productivity of 0.51 g/L/h, even at 38 °C. These results clearly demonstrate that xylose metabolism can be improved by the utilization of appropriate combinations of thermostable PPP genes in high-temperature production of ethanol.

Funder

New Energy and Industrial Technology Development Organization

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3