Affiliation:
1. grid.442619.c Department of Biological Sciences Caleb University Lagos Nigeria
2. Shell Nigeria Exploration and Production Company (SNEPCO) Lagos Nigeria
3. Shell Petroleum Development Company (SPDC) of Nigeria Port Harcourt Nigeria
4. grid.17063.33 0000 0001 2157 2938 Department of Physical and Environmental Sciences University of Toronto Scarborough M1C 1A4 Toronto ON Canada
5. grid.22072.35 0000000419367697 Department of Biological Sciences University of Calgary 2500 University Dr. NW T2N 1N4 Calgary AB Canada
6. grid.422154.4 0000000404726394 Shell Global Solutions International BV 2280 AB Rijswijk The Netherlands
Abstract
Abstract
Samples were obtained from the Obigbo field, located onshore in the Niger delta, Nigeria, from which oil is produced by injection of low-sulfate groundwater, as well as from the offshore Bonga field from which oil is produced by injection of high-sulfate (2,200 ppm) seawater, amended with 45 ppm of calcium nitrate to limit reservoir souring. Despite low concentrations of sulfate (0–7 ppm) and nitrate (0 ppm), sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (NRB) were present in samples from the Obigbo field. Biologically active deposits (BADs), scraped from corrosion-failed sections of a water- and of an oil-transporting pipeline (both Obigbo), had high counts of SRB and high sulfate and ferrous iron concentrations. Analysis of microbial community composition by pyrosequencing indicated anaerobic, methanogenic hydrocarbon degradation to be a dominant process in all samples from the Obigbo field, including the BADs. Samples from the Bonga field also had significant activity of SRB, as well as of heterotrophic and of sulfide-oxidizing NRB. Microbial community analysis indicated high proportions of potentially thermophilic NRB and near-absence of microbes active in methanogenic hydrocarbon degradation. Anaerobic incubation of Bonga samples with steel coupons gave moderate general corrosion rates of 0.045–0.049 mm/year, whereas near-zero general corrosion rates (0.001–0.002 mm/year) were observed with Obigbo water samples. Hence, methanogens may contribute to corrosion at Obigbo, but the low general corrosion rates cannot explain the reasons for pipeline failures in the Niger delta. A focus of future work should be on understanding the role of BADs in enhancing under-deposit pitting corrosion.
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Biotechnology,Bioengineering
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献