Plant-derived compounds as natural antimicrobials to control paper mill biofilms

Author:

Neyret Christophe1,Herry Jean-Marie23,Meylheuc Thierry23,Dubois-Brissonnet Florence23

Affiliation:

1. grid.81292.30 Centre Technique du Papier (CTP) Domaine Universitaire BP 251 CS90251 Grenoble cedex 9 France

2. grid.417885.7 0000 0001 2185 8223 AgroParisTech, UMR MicAliS 1 avenue des Olympiades 91300 Massy France

3. grid.417961.c INRA, UMR 1319 MicAliS Domaine de Vilvert 78350 Jouy-en-Josas France

Abstract

Abstract Biofilms can cause severe problems in industrial paper mills, particularly of economic and technological types (clogging of filters, sheet breaks or holes in the paper, machine breakdowns, etc.). We present here some promising results on the use of essential oil compounds to control these biofilms. Biofilms were grown on stainless-steel coupons with a microbial white water consortium sampled from an industrial paper mill. Five essential oil compounds were screened initially in the laboratory in terms of their antimicrobial activity against planktonic cells and biofilms. The three most active compounds were selected and then tested in different combinations. The combination finally selected was tested at the pilot scale to confirm its efficiency under realistic conditions. All the compounds tested were as active against biofilms as they were against planktonic cells. The most active compounds were thymol, carvacrol, and eugenol, and the most efficient combination was thymol–carvacrol. At a pilot scale, with six injections a day, 10 mM carvacrol alone prevented biocontamination for at least 10 days, and a 1 mM thymol–carvacrol combination enabled a 67 % reduction in biofilm dry matter after 11 days. The use of green antimicrobials could constitute a very promising alternative or supplement to the treatments currently applied to limit biofilm formation in the environment of paper mill machines.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3