Moderate expression of the transcriptional regulator ALsR enhances acetoin production by Bacillus subtilis

Author:

Zhang Xian1,Zhang Rongzhen1,Bao Teng1,Yang Taowei1,Xu Meijuan1,Li Huazhong1,Xu Zhenghong2,Rao Zhiming13

Affiliation:

1. grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi Jiangsu People’s Republic of China

2. grid.258151.a 0000000107081323 School of Medicine and Pharmaceuticals Jiangnan University 214122 Wuxi Jiangsu People’s Republic of China

3. grid.258151.a 0000000107081323 School of Biotechnology Jiangnan University 1800 Lihu Avenue 214122 Wuxi Jiangsu People’s Republic of China

Abstract

Abstract Acetoin, a major extracellular catabolic product of Bacillus subtilis cultured on glucose, is widely used to add flavor to food and also serves as a precursor for chemical synthesis. The biosynthesis of acetoin from pyruvate requires the enzymes α-acetolactate synthase (ALS) and α-acetolactate decarboxylase (ALDC), both of which are encoded by the alsSD operon. The transcriptional regulator ALsR is essential for the expression of alsSD. Here we focused on enhancing the production of acetoin by B. subtilis using different promoters to express ALsR. The expression of reporter genes was much higher under the control of the HpaII promoter than under control of the PbdhA promoter. Although the HpaII promoter highly enhanced transcription of the alsSD operon through overexpression of ALsR, the production of acetoin was not significantly increased. In contrast, moderate enhancement of ALsR expression using the PbdhA promoter significantly improved acetoin production. Compared with the wild-type, the enzyme activities of ALS and ALDC in B. subtilis harboring PbdhA were increased by approximately twofold, and the molar yield of acetoin from glucose was improved by 62.9 % in shake flask fermentation. In a 5-L fermentor, the engineered B. subtilis ultimately yielded 41.5 g/L of acetoin. Based on these results, we conclude that enhanced expression of ALDC and ALS by moderately elevated expression of the transcriptional regulator ALsR could increase acetoin production in recombinant B. subtilis.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3