Affiliation:
1. grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi Jiangsu People’s Republic of China
2. grid.258151.a 0000000107081323 School of Medicine and Pharmaceuticals Jiangnan University 214122 Wuxi Jiangsu People’s Republic of China
3. grid.258151.a 0000000107081323 School of Biotechnology Jiangnan University 1800 Lihu Avenue 214122 Wuxi Jiangsu People’s Republic of China
Abstract
Abstract
Acetoin, a major extracellular catabolic product of Bacillus subtilis cultured on glucose, is widely used to add flavor to food and also serves as a precursor for chemical synthesis. The biosynthesis of acetoin from pyruvate requires the enzymes α-acetolactate synthase (ALS) and α-acetolactate decarboxylase (ALDC), both of which are encoded by the alsSD operon. The transcriptional regulator ALsR is essential for the expression of alsSD. Here we focused on enhancing the production of acetoin by B. subtilis using different promoters to express ALsR. The expression of reporter genes was much higher under the control of the HpaII promoter than under control of the PbdhA promoter. Although the HpaII promoter highly enhanced transcription of the alsSD operon through overexpression of ALsR, the production of acetoin was not significantly increased. In contrast, moderate enhancement of ALsR expression using the PbdhA promoter significantly improved acetoin production. Compared with the wild-type, the enzyme activities of ALS and ALDC in B. subtilis harboring PbdhA were increased by approximately twofold, and the molar yield of acetoin from glucose was improved by 62.9 % in shake flask fermentation. In a 5-L fermentor, the engineered B. subtilis ultimately yielded 41.5 g/L of acetoin. Based on these results, we conclude that enhanced expression of ALDC and ALS by moderately elevated expression of the transcriptional regulator ALsR could increase acetoin production in recombinant B. subtilis.
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Biotechnology,Bioengineering
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献