Affiliation:
1. grid.264257.0 0000000403878708 Department of Environment and Forest Biology SUNY-College of Environmental Science and Forestry Illick 201, 1 Forestry Drive 13210 Syracuse NY USA
2. grid.264257.0 0000000403878708 Department of Chemistry SUNY-College of Environmental Science and Forestry 13210 Syracuse NY USA
Abstract
Abstract
Sugar maple hemicellulosic hydrolysate containing 71.9 g/l of xylose was used as an inexpensive feedstock to produce polyhydroxyalkanoates (PHAs) by Burkholderia cepacia ATCC 17759. Several inhibitory compounds present in wood hydrolysate were analyzed for effects on cell growth and PHA production with strong inhibition observed at concentrations of 1 g/l furfural, 2 g/l vanillin, 7 g/l levulinic acid, and 1 M acetic acid. Gradual catabolism of lower concentrations of these inhibitors was observed in this study. To increase the fermentability of wood hydrolysate, several detoxification methods were tested. Overliming combined with low-temperature sterilization resulted in the highest removal of total inhibitory phenolics (65%). A fed-batch fermentation exhibited maximum PHA production after 96 h (8.72 g PHA/L broth and 51.4% of dry cell weight). Compositional analysis by NMR and physical–chemical characterization showed that PHA produced from wood hydrolysate was composed of polyhydroxybutyrate (PHB) with a molecular mass (M N) of 450.8 kDa, a melting temperature (T m) of 174.4°C, a glass transition temperature (T g) of 7.31°C, and a decomposition temperature (T decomp) of 268.6°C.
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Biotechnology,Bioengineering
Cited by
151 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献